Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6001, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472232

RESUMO

The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing N e + ≥ 10 5 positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

2.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311487

RESUMO

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

4.
Sci Rep ; 9(1): 3249, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824838

RESUMO

Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 µm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.

5.
Sci Rep ; 9(1): 4471, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872656

RESUMO

Protontherapy has emerged as more effective in the treatment of certain tumors than photon based therapies. However, significant capital and operational costs make protontherapy less accessible. This has stimulated interest in alternative proton delivery approaches, and in this context the use of laser-based technologies for the generation of ultra-high dose rate ion beams has been proposed as a prospective route. A better understanding of the radiobiological effects at ultra-high dose-rates is important for any future clinical adoption of this technology. In this study, we irradiated human skin fibroblasts-AG01522B cells with laser-accelerated protons at a dose rate of 109 Gy/s, generated using the Gemini laser system at the Rutherford Appleton Laboratory, UK. We studied DNA double strand break (DSB) repair kinetics using the p53 binding protein-1(53BP1) foci formation assay and observed a close similarity in the 53BP1 foci repair kinetics in the cells irradiated with 225 kVp X-rays and ultra- high dose rate protons for the initial time points. At the microdosimetric scale, foci per cell per track values showed a good correlation between the laser and cyclotron-accelerated protons indicating similarity in the DNA DSB induction and repair, independent of the time duration over which the dose was delivered.


Assuntos
Quebras de DNA de Cadeia Dupla , Fibroblastos/efeitos da radiação , Terapia com Prótons/instrumentação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Ciclotrons/instrumentação , Relação Dose-Resposta à Radiação , Fibroblastos/química , Fibroblastos/citologia , Humanos , Lasers , Estudos Prospectivos , Terapia com Prótons/efeitos adversos
6.
Phys Rev Lett ; 123(25): 254801, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922780

RESUMO

Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15 mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×10^{6} photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.

7.
Phys Rev Lett ; 120(25): 254801, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979081

RESUMO

We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×10^{18} cm^{-3}. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.

8.
Phys Rev Lett ; 119(5): 054801, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949740

RESUMO

The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

9.
Phys Rev Lett ; 119(4): 044802, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341755

RESUMO

We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.

10.
Sci Rep ; 5: 13244, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26283308

RESUMO

A bright µm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 µm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.


Assuntos
Fêmur/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Lasers , Aceleradores de Partículas/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Absorciometria de Fóton/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/instrumentação , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Philos Trans A Math Phys Eng Sci ; 372(2010): 20130032, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24470414

RESUMO

Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10-100 keV range.

12.
Rev Sci Instrum ; 84(11): 113302, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289391

RESUMO

Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

13.
Phys Rev Lett ; 108(13): 135004, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540709

RESUMO

We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving µJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

14.
Phys Rev Lett ; 105(20): 205003, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231241

RESUMO

We report on experimental investigations into strong, laser-driven, radiative shocks in cluster media. Cylindrical shocks launched with several joules of deposited energy exhibit strong radiative effects including rapid deceleration, radiative preheat, and shell thinning. Using time-resolved propagation data from single-shot streaked Schlieren measurements, we have observed temporal modulations on the shock velocity, which we attribute to the thermal cooling instability, a process which is believed to occur in supernova remnants but until now has not been observed experimentally.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 015401, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658765

RESUMO

The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.

16.
Phys Rev Lett ; 100(5): 055001, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352379

RESUMO

Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations.

17.
Phys Rev Lett ; 98(12): 123401, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17501120

RESUMO

We report on measurements of ion energy distributions from hydrogen clusters irradiated by intense laser pulses of duration 40 and 250 fs. Contrary to the predictions of a simple Coulomb explosion model, we observe a pronounced spatial anisotropy of the ion energies from these explosions with the highest energy ions ejected along the laser polarization direction. The origin of the anisotropy is distinct from that previously seen in clusters of high Z atoms such as Ar and Xe. Furthermore, a measured increase in H+ ion energy when longer, lower intensity pulses are employed suggests that multiple-pass, vacuum heating of the cluster electrons is important in the deposition of energy by the laser.

18.
Phys Rev Lett ; 98(4): 045001, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17358781

RESUMO

Irradiation of a planar solid by an intense laser pulse leads to fast electron acceleration and hard x-ray production. We have investigated whether this high field production of fast electrons can be controlled by introducing dielectric spheres of well-defined size on the target surface. We find that the presence of spheres with a diameter slightly larger than half the laser wavelength leads to Mie enhancements of the laser field which, accompanied by multipass stochastic heating of the electrons, leads to significantly enhanced hard x-ray yield and temperature.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 2): 016403, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907194

RESUMO

We have studied experimentally the angular distributions of fusion neutrons from plasmas of multi-keV ion temperature, created by 40 fs, multi-TW laser pulses in dense plumes of D2 and CD4 clusters. A slight anisotropy in the neutron emission is observed. We attribute this anisotropy to the fact that the differential cross section for DD fusion is anisotropic even at low collision energies, and this, coupled with the geometry of the gas jet target, leads to beam-target neutrons that are slightly directed. The qualitative features of this anisotropy are confirmed by Monte Carlo simulations.

20.
Phys Rev Lett ; 95(19): 195003, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16383989

RESUMO

Intense, femtosecond irradiation of atomic and molecular clusters can initiate Coulomb explosions, generating particle energies sufficient to drive nuclear fusion. Last and Jortner have proposed, based on particle dynamics simulations, that heteronuclear clusters with a mixture of heavy and light ions will not explode by the simple, equilibrium Coulomb model but that dynamic effects can lead to a boosting of energy of the lighter ejected ions [Phys. Rev. Lett. 87, 033401 (2001)]. We present experimental confirmation of this theoretically predicted ion energy enhancement in methane clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...